Tutorial for StateEditor

Michael Pusch

8.1.2004

1. My first model

On starting the “StateEditor” program, a menu, a toolbar and an empty window, entitled “StateEditor1” will appear. The window has two “views” connected to it:

· the results view (upper window), where the simulations are shown.

· the model view (lower window), where you edit the model.

A small red circle is seen in the model view. This means that the current model has a serious defect. In fact there is no state yet. You create a new state by either

· double clicking into empty space (empty means not on top of another state, or between states)

· or clicking the right button on empty space and selecting “New State”

The label you assign to the state has ABSOLUTELY no consequence for the model. It is just for you to distinguish better the states. The label can be any length, but it is better to be short in order to fit in the small box drawn. Choose “C” (closed) for now.

The current can be an arbitrary function of voltage and parameters, just as the transition rates. These functions will be described below. For now choose “0”.

The sigma must be a numerical value. It is used for single (or multiple)-channel, MonteCarlo-simulations to add a certain noise level (in “pA”) to the state. For now chose e.g. “0.2”.

You have created the first state of the model. You can move it around in the window with the mouse (it might be useful to maximize the windows). You can also save the model on a file, and when reopening the file, the state will be at the same relative position in the window. But of course

the small red circle is still red because we also need an open state. Create it as above, but do not forget to assign “1” to the current. Put e.g. 0.4 for sigma, to simulate open-channel noise. (The noise added is just gaussian noise, i.e. the amplitude histogram of the corresponding level will be a gaussian with the sigma you set and the power-spectrum is flat).

You can edit the states by double-clicking on them.

The red circle is still red because the connectivity of the model is not good. We have to connect the two states! To do this, right-click BETWEEN the states and chose “NewTransition1”. This will add a transition FROM the state with the lower index TO the state with the higher index. The indexes go from 0 (ZERO), to N-1, starting with the first state you created.

In order to simulate a voltage-dependent channel you enter the following function string:

a[0]*exp(a[1]*v/25.4)

“v” is the (variable) voltage in mV! (NOT in Volt!!). 25.4 is about RT/F at room temperature (in mV) and a[0] and a[1] are two parameters that you have to assign a value. The parameters are edited in dialog window (Ctrl+A, or Edit->EditArray, or toolbar icon with the “A”).

Assign 1.0 for a[0] and a[1].

NOTES FOR FUNCTION STRINGS:

· No distinction is made between upper case and lower case

· Everything after “ ‘ “ is ignored so you can comment your strings:

a[0]*exp(a[1]*v/25.4) ‘ a[0]: rate at 0 mV; a[1] gating valence
· The parser is NOT PERFECT, be cautious; use parenthesis!; test!

· The symbols “v” and “x” are interchangeably used for “voltage”, but in the case of reusable functions (see below) they define just the argument without any predefined meaning!

· Supported operators are:

· Binary operators: +, -, *, /, ^ (power)

· exp(x), inv(x) (=1/x), sqrt(x), log(x) (=NATURAL(!) logarithm), fabs(x) (absolute value)

· step(x) = 0 for x<0, =1 else

-among these operations any combination is possible; a non-sense but possible choice is:

a[0]*step(v) + a[1]*step(-v)*a[2]*log(sqrt(inv(exp(x-a[5]))))+ a[5]

· indexes of the array a[…] MUST BE INTEGER VALUES; THEY CANNOT BE

EXPRESSIONS

Now finally the red circle turned green because the states are connected and we could proceed to the simulation. The model is, however, still a bit ugly because the channel will be open at all voltages; there is no closing rate. Add this, again by right-clicking between the states. For now assign the function

a[2]*exp(a[3]*v/25.4)

and assign the values 1.0 and –1.0 for a[2] and a[3] respectively. Now we have a fully functional, voltage-dependent two-state model.

For now ignore the “Special current function” and the check-box at the top right of the lower. These are intended for modeling transporters instead of channels and will be explained later. Be sure the check-box is unchecked.

Before jumping to the calculations two additional features of the Model View will be explained: Variables and Functions.

You have probably noticed that the transition-rate function strings are displayed on the screen along with the arrow that connects the states. This may be difficult to read in the case of many states. It may also be that the same function, or some multiple of a function is used at several places. For this reason “variables” and “functions” are used often.

Variables are denoted by w[…] in a function string and are calculated exactly once and in order before evaluating the transition-rates.

You can thus use e.g. w[0] for the calculation of w[1], but not vice-versa!

Using the menu Variables->Add (or just hitting “a”) add the variable 0:

exp(a[1]*v/25.4)

(Just write this string and not “w[0]=..” or something like that)

Then add the variable 1:

a[0]*w[0]

(This is just to explain the use of the variables. You could have used immediately the full function; Try to erroneously write for w[1]: a[0]*w[2] The red light will appear, because you cannot use a variable that is not defined at the moment of the calculation.)

Now add the variable 2:
a[2]*exp(a[3]*v/25.4)

and change the transition rates to w[1] and w[2], respectively.

Everything is much clearer now (I think).

The use of “reusable functions” (or just “functions”) is more difficult to understand. The reason I added them is because for a certain model I needed to impose microscopic reversibility, but only at 0 mV! Using the variables this led to quite awkward formula.

Suppose you have three states:

A

 / \

 B --- C

You want that kAB(0 mV) = kAC(0) * kCB(0) * kBA(0) / {kBC(0)*kCA(0) }

With StateEditor you can create the functions

Func[0]:
corresponds to kAC(v)

Func[1]:
corresponds to kCB(v)

…

etc.

and you can assign to the transitions rates e.g. to that for A->C: func[0](v)

and so on.

Assume now an exponential voltage dependence for kAB:

kAB(v)=kAB(0)*exp(zAB*v/25.4)

To implement this you create the variable w[0]:

w[0] = func0*func[1](0) / (func[2](0)*func[3](0)*func[4](0))

and the function func[5]:

func[5] = w[0]*exp(a[10]*v/25.4)

and you assign

func[5](v)

to the transition A->B

You see that the functions 0-4 are called twice for each voltage: Once with argument “v” to calculate all transition rates except kAB, and once with argument “0” to calculate kAB(0). This maybe computationally not very effective but it leads to clearer formulas.

ATTENTION: There is (yet) no check for recursive function calls or improper use of variables within functions. So if you are not cautious, the program might hang easily.

2. My first simulation

Let’s forget about functions for now and jump to the first simulation.

2.1 Time course

With Ctrl+T or Go->TimeCourse (or the corresponding toolbar icon) you plot the time course of the relaxations predicted by the model according to the “pulse-protocol” defined in the parameters.

2.1.1. The Pulse-Protocol

It consists of 3 segments:

1. a holding period (its length is insignificant).Vhold defines the initial distribution.

2. a segment 1 (with variable length/voltage)

3. a segment 2 (with variable length/voltage)

The other parameters used for the time course are:

Npulses: it determines the number of pulses (useful only if you have a delta T, or a Delta V or if you want to simulate many traces)

dt : it determines how many points are calculated and displayed

ScaleP: a multiplier for the plotted values; if this is 1, a full scale is from 0 to 1 (useful if

you want to plot open probabilities, as is normally the case)

UseAltArray: An “alternative” array of parameters can be used (e.g mutant / WT).

If you click Edit->Edit Alt Array, you can select which of the parameters

shall be different for the “alternative” case and what values they should have.

SwitchParamsAtSwitchTime:
I added this to simulate a “concentration-jump”. Suppose that a[31] is the concentration of a ligand. You want to switch it from 0 to 1 mM at a certain time, tswitch1 and back to 0 at tswitch2. To simulate this you put a[31]=0 in the “regular” array (Ctrl+A) and a[31]=1 in the alternative array (Ctrl+R). Then you check the box SwitchParamsAtSwitchTime and insert the values of tswitch1 and tswitch2.
The “Pcodes”
are described below

Scaling of the traces is also controlled in the parameter dialog.

2.1.2. What is shown?

The black trace is always the current.

In addition you can display the p(t) of individual states or of the sum of states.

Suppose you want to display p(0), p(1), p(1)+p(2), and p(0)+p(2)+p(3)

Then you have to enter:

pcode 1 (red):

2^0 = 1

pcode 2 (green)
2^1 = 2

pcode 3 (blue)

2^1 + 2^2 = 2 + 4 = 6

pcode 4 (grey)

2^0 + 2^2 + 2^3= 1 + 4 + 8 = 13

2.1.3. Exporting the time course

There are two possibilities to export the time course:

· as a simple (“white-spaced”) ASCII file (File->Export)

· as a “ana” data file, readable (only!) by “ana.exe” (WriteAna (Ctrl+W))

The columns of the ASCII file are: time, current, and eventual “pcodes”

The ana-program is very useful if you want to fit exponentials, make single-channel analysis, etc.

2.2. Steady state

(Menu: Go->SteadyState; key: Ctrl+D; Toolbar)

Steady state-popen and tau’s are calculated in the range from Vleft to Vright (see parameters). For the popen’s, the same “pcodes” as above apply. Time constants are shown on a logarithmic scale. Both, popen and tau’s can be exported as ASCII files.

The “Pcodes” described above apply also here.

Scaling is controlled in the parameters dialog. The black trace is again normally the current. If the "Use spec. func" check-box is checked, instead of the current the "special function" is evaluated and displayed as a black trace. This is useful if you want to simulate a transporter for which the current of a state has no sense (see below).

…

3. Single (or multiple) channel Monte-Carlo simulation

With Go->Simulate the model is simulated according to the currently selected pulse.

 NOTE HOWEVER:

ALL VOLTAGE AND TIME STEPS ARE IGNORED!

This means that if you have selected e.g. 100 pulses, that all of them are calculated with the SAME PULSE PROTOCOL (i.e. the first pulse).

(Another limitation: The “parameter-switch” to the alt-array is not supported for the Monte-Carlo simulation.)

(Another limitation: Right now only models with less than 41 states can be simulated with MonteCarlo)

(Another limitation: Right now only 1000000=1E6 points per trace can be simulated, i.e. the total time of the trace divided by dt must be smaller than 1E6)

In the params-dialog you can further:

· Select the number of channels

· Select the “sample-time”, dt

(Note that the accuracy of the Monte-Carlo simulation is INDEPENDENT of this

“sample-time”. It depends only on the accuracy of the random-number generator.

Of course, if you select a “large” sample-time, there will be lot’s of missed events,

that are generated, but not sampled).

The algorithm of the Monte-Carlo is as follows: suppose a channel is in state i at time t.

Then a random dwell-time in this state is determined by t = -log(r)/s where log is the (natural!) logarithm, r is a floating-point random number between 0 and 1, and s is the sum of all rate-constants that lead away from state i. To decide into which state the channel shall then go, another random number, r', is used on the basis of the probability to go into each state of the model (example: with 3 states and i=0 the channel can go to state 1 or to state 2. If r'< k01/(k01+k02) then the channel will go to state 1, else to state 2).

· Specify if you want to be asked for a file-name where you want to store the simulation.

The format is again “ana”.

To confirm that the calculations are correct you can compare a Monte-Carlo simulation with many (e.g. 1000) channels, with an analytical time-course calculation.

4. Effect of varying a parameter on the various calculations

Sometimes you want to see the effect of varying a single parameter on steady-state, or time course properties or others.

To do this select the menu item Edit->EditShowRates

In the right half of this dialog box you can select

· which parameter you want to vary

· the range over which you want to vary

· how many intermediate steps you want to calculate (The number of calculations is

1 + this number)

· if you want to vary the parameter linearly or logarithmically

In the menu Vary Param you can see what kind of calculations are possible with this kind of variation.

5. Dose response

Suppose you want to model the effect of a ligand or a blocker. Let’s assume a blocker. Its concentration might be given by parameter a[31].

Extending the simple 2-state model described above we assume a voltage-independent open channel blocker with koff=1, and kon = 1*c, able to bind only to the open state.

We thus add a state (B) and connect it to “O” with rate(O->B) = a[31] and rate(B->O)=1.

Using the VaryParam described above you could e.g. inspect the effect of increasing the concentration on steady state and time course etc.

But you also want to know the “apparent KD”, i.e. the dependence of steady state current as a function of voltage, and thus the apparent KD as a function of voltage.

In the dialog Edit->Dose Response Params you have to define the conditions used for this kind of calculation:

· Which parameter represents the “concentration” (in our case 31)

· The concentration range over which to calculate the dose response (c1, c2)

· The “0-concentration”. This is a number close to zero but not zero to avoid singularities of the model at c=0 (where one rate constant would vanish)

· nc, the number of concentrations used in the “dose-response” calculation and KD-fit

· vleft, vright, dv: Voltage-range and step to calculate the dose-response

With Go->DoseResponse (or VaryParam->DoseResponse) the dose-response is calculated.

In the left half of the window is shown the dependence of the CURRENT as a function of c (black curves). The curve for each voltage is FITTED with the equation

I(c)/I(c0 ~ 0) = 1 / (1 + c/KD) (Eq. DosResp)

(red curves). And the resulting KD-values are shown in the right half as a function of voltage.(Keep in mind that the c-dependence may not all confirm to Eq. (DosResp))

(LIMITATION: Hill coefficients not (yet) supported)

6. Exporting results

In the File->Export dialog you can select several types of information to be exported

in PLAIN, WHITE-SPACED, ASCII format:

- Time course: col 1= time; col 2 = current; col3 = pcode1 (if any), …

· steady state: col1 = v, col2 = current, …

· time constants: col1=v, col2=t1, …

· tail-time constants and coefficients: the time constants and coefficients of the corresponding exponentials of the relaxation corresponding to the SECOND segment are written in the order:

vhold, v1, t1, v2=vtail, NTAU, ainf, t0, a0, t1, a1, …

- dose response, and KD(V)
7. States in fast equilibrium

You can select transitions between two states to be "in fast equilibrium".

[image: image1.jpg]
In the example in the figure states A and B and states C and D are respectively in fast equilibrium.

Kinetically the system behaves like a two-state system with state A' comprising A and B and state B' comprising states C and D and effective rate constants:

rate (A' -> B') =

 (rate(B->A)*rate(A->D) + rate(A->B)*rate(B->C)) / (rate(B->A) + rate(A->B))

and similar for rate (B'->A').

This works also if more than two states are in rapid equilibrium.

8. Inactivate a transition without deleting it

You might want to test the effect of dis-connecting two states. You could just delete the transition but when re-entering it you have to retype the function. An alternative possibility is to "inactivate" a transition by the right-click menu. Inactive transitions are drawn in blue.

9. Fitting of "macroscopic" data

StateEditor can fit a model to a collection of data traces simultaneously. Below is described how the data can be loaded and how the fit is controlled. Before some general considerations.

1. Suppose you have data from several different "cells". Obviously the "number of channels" is different in the cells. This can be accounted for. Actually, the data are divided in groups:

data from cell 1

data from cell 2

data from cell 3

…

For each group an optimal "scaling factor" is determined as follows:

Assume group 1 has data points yi and simulated (unscaled) model values fi (under various conditions but under the assumption of a constant "number of channels"). The scale, s, for this group is then simply calculated by minimizing

Sum over i (yi-s*fi)^2

which gives (setting the derivative with respect to s equal to 0)

s = (sum yi*fi)/sum (fi^2).

2. Fitting data at various potentials can be a problem because you also need to know the "driving-force" or conductance. To account for this you can either measure at a constant voltage (using e.g. "envelope protocols") or you implement the voltage-dependence of the single-channel current in the model.

3. Long data traces may take a long time to fit and often the initial phase of a relaxation is what is most important but you also want to get the steady-state value. StateEditor offers a simple way of "data-compression" using a logarithmic compression factor (You can change it in the menu: Edit->Compression Factor). It works as follows.

Assume a compression-factor of 1.2 (which is large; I used 1.05)

A running product P is calculated for each data-point to be read in:

Initially P=1

Read data point 0+P = 1; then set P -> P*1.2 = 1.2

Read data point 1+P = 2 (in integer terms); then set P->P*1.2=1.44

Read data point 2+P = 3; then set P->P*1.2=1.73

Read data point 3+P = 4; then set P->P*1.2=2.1

Read data point 4+P = 6; (AHA THE FIRST JUMP) then set P->P*1.2=2.5

Read data point 5+P = 7; then set P->P*1.2=2.99

Read data point 6+P = 8; then set P->P*1.2=3.6

Read data point 7+P = 10; (SECOND JUMP) then set P->P*1.2=4.3

Read data point 8+P = 12; (AGAIN) then set P->P*1.2=5.2

…

The "jumps" become exponentially bigger. Data are averaged while reading if more than one data point contributes.

With CompressionFactor=1 all data points are used, no "compression" is done.

The fit will of course depend on the "compression" because the different phases of the responses are given a different weight. Without "compression", if you fit an extremely long pulse and several short (informative) ones, the long one is given more weight simply because it has more points.

4. StateEditor can fit a model under two different "conditions". For example (the reason I did it () suppose you want to fit simultaneously currents recorded in potassium and rubidium and you suspect e.g. that one parameter (or any number of parameters) is affected by this condition. Assume for simplicity that only parameter a[0] is suspected to depend on Rubidium. Then you select the command Edit->Alt Array (Ctrl+R), you edit the "alternative" array of parameters and ONLY for a[0] you select the "Use" option and provide a reasonable value. You can chose to fit or to leave constant the value selecting or not the "fit" button. Now, everytime a data file is assigned to the "alternative" condition, the "alternative" parameter is used for the evaluation of the fit.

9.1 Data format of a binary file to be loaded

First of all different types of "pulse-protocols" have to be distinguished.

These are:

Protocol 0:

0 = "constant tail IV", i.e. a protocol of the form

Vhold VCond, TCond Vtail

 DeltaVCond

(only 3 pulses are shown)

A binary file with this format contains ONLY the data of the red segment (i.e. constant voltage).

If you export binary data from "Ana" for this format (see below) make sure that the relevant segment is the variable one!

Protocol 1:

1 = "Tails", i.e. a protocol of the form

Vhold VCond, TCond Vtail

 DeltaVTail

(only 3 pulses are shown)

A binary file with this format contains ONLY the data of the red segment.

If you export binary data from "Ana" for this format (see below) make sure that the relevant segment is the variable one!

Protocol 2:

2 = "Envelope", i.e. a protocol of the form

Vhold VCond, TCond Vtail

 DeltaTCond

(variable conditioning pulse duration)

A binary file with this format contains ONLY the data of the red segment.

If you export binary data from "Ana" for this format (see below) make sure that the relevant segment is one with the variable time!

Protocol 3:

3 = "direct IV", i.e. a protocol of the form

Vhold VCond, TCond

 DeltaVCond

(only 3 pulses are shown)

A binary file with this format contains ONLY the data of the red segment.

If you export binary data from "Ana" for this format (see below) make sure that the relevant segment is the variable one!

A binary file to be imported has a header of the type

int
ExportType
(32 bits; =0, 1, 2, or 3 describing the protocol type)

int
NTraces
(32 bits)

int
NPoints
(32 bits, number of data points for each trace)

double SampleTime
(64 bits)(sample interval in the same time units as in the model; probably

seconds!)

double VHold
(64 bits)

double StimInterval
(64 bits)(this is currently NOT used by StateEditor. It is assumed to be

infinite!)

int
TimeOffset
(32 bits; describes the time offset of the first data point from the beginning

of the pulse in sampletimes (to avoid capacity transients)

double VTail

double DeltaVTail

double TCond

double DeltaTCond

double VCond

double DeltaVCond

Voltages are in mV.

After the header follow immediately the data points (i.e. NTraces*Npoints points) each as a

64 bit double in arbitrary units!

9.2 Organization of the data files

A set of ASCII files that contain the names of the binary files and the conditions (group of cells ecc.) organize the input. The hierarchy is as in the example:

Assume 2 cells. Cell 1 was measured under two different conditions (see above what is meant by the conditions), while cell 2 was measured only in the standard condition. For cell 1 there is an IV (type 0) under "standard" condition ("c:/myfiles/file1.bin"), a tail under standard condition ("c:/myfiles/file2.bin") and an IV (type 0) under alternative condition ("c:/myfiles/file3.bin"). For cell 2 there is a "direct IV" (type 3) under standard condition ("c:/myfiles/file4.bin").

The following 6 ASCII files have to be created (using e.g. Notepad)(names and extensions of the ascii and binary files are arbitrary but the extension "all" is default for the first file):

IMPORTANT NOTE: SPACES ARE NOT ALLOWED IN THE DIRECTORY OR FILE NAMES. THUS THE DESKTOP IN WINDOWS2000 IS NOT A GOOD PLACE TO PUT THE FILES. SORRY, I KNOW THIS IS A BUG, BUT …

1. all.all containing the text lines:

c:/myfiles

cell1.txt

cell2.txt

The first line defines the directory where all files are to be located. The second and third line identifies other ascii-files describing the individual cells.

2. cell1.txt contains the following lines

cell1a.txt 0

cell1b.txt 1

3. cell2.txt contains the following lines

cell2a.txt 0

The number (0 or 1) indicates the condition (standard or alternative)

4. cell1a.txt contains the lines

file1.bin

file2.bin

5. cell1b.txt contains the line

file3.bin

6. cell2a.txt contains the line

file4.bin

(I agree: its a bit tedious. could be made user-friendlier but that's the way it is right now).

9.3 Using "ana" to export binary data for StateEditor

I assume now that you can read your primary data with "ana" and that you are a bit familiar with the program (see its online help).

1. Select the series or single trace you want to use for the fit.

2. Select the correct "relevant segment" as this determines the header of the binary file (see 9.1)

3. Put the blue cursor at time 0 of the segment you want to export (or if you want to export all points starting with time 0, put the blue cursor to the right of the left green cursor).

4. Put the green cursors in the range you want to export.

5. Select "File->Binary->ExportBinary for StateEditor" and make your (correct) choices.

9.4 Fitting

Select "Show->Fit" to start the fit. Hit F12 to stop the fit.

9.5 Visualizing the data and the fit in StateEditor

Selecting "Show->ShowAllData" the data traces are shown (black) together with the fit (red). Hit SPACE to move on to the next binary file and finally to exit from the "ShowAllData" menu point.

If the program seems to be frozen hit SPACE.

9.6 Exporting the fit

Chose "File->Export->Data and fit" to obtain an ASCII file with all fitted points, traces are separated by a blank row (I have to check what is actually exported).

10. Modeling a transporter

For a transporter the current is not caused by the protein being in specific state but rather by transitions from one state to another.

[image: image2.jpg]
Assume this simple transporter that catches/releases a substrate, S, at each side of the membrane, EXT and INT.

The actual transport in steady state would be

Flux = p[1]*w[2] - p[2]*w[3]

where p[1] is the probability to stay in state EXT-S etc.

To calculate this value for the "current" you have to enter this "special function" in Functions->Special Current Function and you have to check the check-box in the upper right corner of the model window.

NOTE THE USE OF THE EXPRESSIONS p[...] THAT ARE NOT ALLOWED IN THE EXPRESSIONS FOR THE TRANSITION-RATES, VARIABLES AND FUNCTIONS. THIS IS BECAUSE THE TRANSITION RATES ARE USED TO CALCULATE THE PROBABILITIES.

The p[] expressions make sense only in the "special function"!

end.
